Critical cones of characteristic varieties
نویسندگان
چکیده
منابع مشابه
Characteristic Varieties of Arrangements
The k Fitting ideal of the Alexander invariant B of an arrangement A of n complex hyperplanes defines a characteristic subvariety, Vk(A), of the complex algebraic torus (C). In the combinatorially determined case where B decomposes as a direct sum of local Alexander invariants, we obtain a complete description of Vk(A). For any arrangement A, we show that the tangent cone at the identity of the...
متن کاملTangent Cones to TT Varieties
As already done for the matrix case in [6, p.256], [1, Thm. 6.1, p.1872] and [10, Thm. 3.2] we give a parametrization of the Bouligand tangent cone of the variety of tensors of bounded TT rank. We discuss how the proof generalizes to any binary hierarchical format. The parametrization can be rewritten as an orthogonal sum of TT tensors. Its retraction onto the variety is particularly easy to co...
متن کاملCurvature, Cones, and Characteristic Numbers
We study Einstein metrics on smooth compact 4-manifolds with an edge-cone singularity of specified cone angle along an embedded 2-manifold. To do so, we first derive modified versions of the GaussBonnet and signature theorems for arbitrary Riemannian 4-manifolds with edge-cone singularities, and then show that these yield non-trivial obstructions in the Einstein case. We then use these integral...
متن کاملCharacteristic numbers of algebraic varieties.
A rational linear combination of Chern numbers is an oriented diffeomorphism invariant of smooth complex projective varieties if and only if it is a linear combination of the Euler and Pontryagin numbers. In dimension at least 3, only multiples of the top Chern number, which is the Euler characteristic, are invariant under diffeomorphisms that are not necessarily orientation preserving. In the ...
متن کاملK-theory of Cones of Smooth Varieties
Let R be the homogeneous coordinate ring of a smooth projective variety X over a field k of characteristic 0. We calculate the K-theory of R in terms of the geometry of the projective embedding of X. In particular, if X is a curve then we calculate K0(R) and K1(R), and prove that K−1(R) = ⊕H(C,O(n)). The formula for K0(R) involves the Zariski cohomology of twisted Kähler differentials on the va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2012
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-2012-05531-0